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DISCRETE LEAST SQUARES APPROXIMATION 
BY TRIGONOMETRIC POLYNOMIALS 

L. REICHEL, G. S. AMMAR, AND W. B. GRAGG 

ABSTRACT. We present an efficient and reliable algorithm for discrete least 
squares approximation of a real-valued function given at arbitrary distinct nodes 
in [0, 2r) by trigonometric polynomials. The algorithm is based on a scheme 
for the solution of an inverse eigenproblem for unitary Hessenberg matrices, and 

requires only O(mn) arithmetic operations as compared with O(mn 2) opera- 
tions needed for algorithms that ignore the structure of the problem. Moreover, 
the proposed algorithm produces consistently accurate results that are often 
better than those obtained by general QR decomposition methods for the least 
squares problem. Our algorithm can also be used for discrete least squares 
approximation on the unit circle by algebraic polynomials. 

1. INTRODUCTION 

Let {0k}71 be a set of m distinct nodes in the interval [0, 27r), let {wf }U1m 
be a set of positive weights, and let f(O) be a real-valued function whose values 
at the nodes Ok are explicitly known. In this paper we present an efficient and 
reliable method for the construction of the trigonometric polynomial 

1 
(1.1) t() = a0 + (aj cosjO + by sinjO), ai, b E 1R, 

j=1 

of order at most 1 < m/2 that minimizes the discrete least squares error 

m 1/2 

(1.2) Ilf- OR If(0k) - t(0k)I Wk 
k=1 

We consider the computation of the desired trigonometric polynomial in 
terms of the following closely related approximation problem. For complex- 
valued functions g and h defined at the nodes Zk, Zk := exp(iak), 1 < k < 
m, introduce the discrete inner product on the unit circle, 

m 

(1.3) (g, h) := E: 2(khZkW 
k=1 
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where the bar denotes complex conjugation. Let g(z) be an analytic function in 
IzI < 1 whose values g(zk) at the m distinct nodes Zk are explicitly known. 
We wish to compute the polynomial 

n-1 

(1.4) P(Z) = ZCjZ' 
j=0 

of degree less than n < m that minimizes the discrete least squares error 

(1.5) 1g _-p :=(g -p, g _ p)1/2 

Introduce the vectors 

T m 
g =[g(z), g(z, . , ** g(Zm)] E C 

C:= [cog C1, ... Cn1] E Cn. 

Then the coefficient vector c for the polynomial (1.4) that minimizes the error 
(1.5) is the least squares solution c of 

(1.6) DAc = Dg, 

where 

(1.7) D = diag[wl, w2, ..., Wm] 

with w1:= W> and A is the transposed Vandermonde matrix 

-1 1 ~ Z ,,,Zn-1 
2 n-1 

(1.8) A= 2 2 Z2 

2 n-1 L Z . Z 

We compute c by using the QR decomposition of DA. Since DA has 
full rank, there is a unique matrix Q E CmXn with orthonormal columns and a 
unique n x n right triangular matrix R with positive diagonal elements such that 
DA = QR. The solution of (1.6) can be obtained from this QR decomposition 
by first evaluating the vector Q*Dg, and then computing c = RK I(Q*Dg). 

Algorithms that compute the QR decomposition of DA without using its 
structure require 0(mn 2) arithmetic operations [5, 9]. In this paper we present 
two algorithms for the solution of the least squares problem (1.6) that implicitly 
compute the QR decomposition of DA and require only 0(mn) arithmetic 
operations. Moreover, numerical results presented in ?5 show that one of these 
efficient algorithms often yields higher accuracy than methods in which a QR 
decomposition of the matrix DA is computed without using its structure. 

Our approach is based on computational aspects associated with the family 
of orthogonal polynomials for the inner product (1.3). Polynomials that are or- 
thogonal with respect to an inner product on the unit circle, such as the discrete 
inner product (1.3), are known as Szego' polynomials. 
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Let {q$}jm' denote the family of orthonormal Szego polynomials with re- 
spect to the inner product (1.3), where Oj is of degree j and has positive 
leading coefficient. Let R = [rk] be the right triangular matrix whose nontriv- 
ial elements are determined by 

k 

(1.9) zk1i EZrik j I(z) 1 < k < n. 
j=I 

Thus, R expresses the power basis in terms of the orthonormal Szego polyno- 
mials. Also define the m x n matrix Q = [qkj] by 

(1.10) qki J=j(Zk)Wk , j = 0, ..., n- 1; k = 1,...,m. 

Observe that Q has orthonormal columns; that is, Q* Q = I, where Q* denotes 
the transposed complex conjugate of Q. Moreover, R has positive diagonal 
entries, and we have 

(1.11) DA = QR. 

Thus, Q is determined by the values of the orthonormal Szego polynomials 
q$, 0 < < n, at the nodes Zk I 1 < k < m, and the columns of R' are the 
coefficients of these Szego polynomials in the power basis. 

The orthonormal polynomials q$j satisfy the Szego recurrence relations 

0o(z) = 4b0(z) = '/Co, 

( 1.12) aj+SOj, l (Z) = Z0j (Z) + Yj+I 0j; ()' =0,1...,m-2 (1.12) ~ ~ ~ ~ ~ ~~~~ 
ji= 0, 1,..m - 2, 

aJ+ j+, z)= z7j1 1 Oj(z) + O z 

where the recurrence coefficients Yj+1 E C and uj+' > 0 are determined by 

t=m Q 1/2 

Vk= 1) 

(1.13) yj+l = -(1, zj(z))1/aj, 

aj, = (1 - lyj, I ) /2, j = 0, 1, ... , m - 2 

a +1 = c07j+? I 

(see, for example, Grenander and Szego [12, Chapter 12]). It follows from 
(1.12) that 

(1.14) q$j(z) = zJ'$(l/z), j =0,1, .. .,m- 1 . 

Moreover, since the measure that defines (1.3) has m points of increase, we 
have IyjI < 1 for 1 < j < m (and IymI = 1). The coefficients yj are known 
as Schur parameters, and we refer to the uj as the associated complementary 
parameters. Although the complementary parameters u, , . , un are 
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mathematically redundant, we retain them during calculations to avoid numer- 
ical instabilities. We take 2t to be the total weight of the measure that defines 
(1.3). 

In ?2 we describe an O(mn) method for determining Q that is based on 
the Szego recursions (1.12) and (1.13), in which the coefficients yj, aj, and 

aj1, and the values qj(Zk), 1 < k < m, are computed for increasing values of 
j . We refer to this procedure as the Stieltjes procedure for Szego' polynomials 
because it is analogous to the Stieltjes procedure that is often used to compute 
the recurrence coefficients and values of orthogonal polynomials that satisfy a 
three-term recurrence relation (see Gautschi [7, 8] and Forsythe [6]). 

The Stieltjes procedure is attractive because it is efficient and easily imple- 
mented. Numerical results show that it often provides accurate answers if n is 
small relative to m. However, for many distributions of nodes Zk the Stielt- 
jes procedure is very sensitive to roundoff errors for larger values of n. This 
sensitivity is illustrated by some computed examples in ?5. 

Consider for the moment the determination of polynomials that are orthog- 
onal with respect to some discrete inner product on a finite interval, and thus 
satisfy a three-term recurrence relation. In matrix-theoretic terms, the construc- 
tion of three-term recurrence coefficients using the classical Stieltjes procedure 
can be viewed as the Lanczos process for transforming a real diagonal matrix 
by orthogonal similarity to tridiagonal form. In fact, this is a manifestation 
of an inverse eigenvalue problem for tridiagonal matrices. One can therefore 
use other numerical methods for this inverse eigenvalue problem to generate 
the recurrence coefficients and, implicitly, the values of the orthogonal polyno- 
mials. In particular, an efficient method for this problem that uses elementary 
orthogonal similarity transformations, due to Rutishauser, is described in [1 1]. 
This method is applied to the generation of orthogonal polynomials that satisfy 
a three-term recurrence relation in [15], and it is observed that this method is 
numerically more reliable than the classical Stieltjes procedure. 

The relationship between Szego polynomials and unitary Hessenberg matrices 
is analogous to that between orthogonal polynomials on a finite interval and 
tridiagonal matrices. In particular, the Schur parameters determine a unitary 
Hessenberg matrix such that the characteristic polynomial of the k x k leading 
principal submatrix of H is the monic Szego polynomial. In this context, the 
Stieltjes procedure for Szego polynomials can be viewed as a solution method 
for an inverse eigenvalue problem for unitary Hessenberg matrices. 

An algorithm for constructing a unitary Hessenberg matrix from spectral data 
using elementary unitary similarity transformations is presented in [ 1]. This al- 
gorithm can be regarded as an inverse QR algorithm for unitary Hessenberg 
matrices, and is analogous to the algorithm of [11] for tridiagonal matrices. 
In ?3 we use this inverse eigenvalue algorithm to compute Q*Dg by apply- 
ing a sequence of elementary unitary transformations on the vector Dg. This 
sequence of unitary matrices implicitly determines Q. We will see that this 
approach also requires only O(mn) operations. Moreover, numerical results 
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show that the inverse unitary QR algorithm produces accurate results, which 
are often more accurate than general 0(mn 2) algorithms for computing Q. 

In ?4 we show that the solution c = R 1 Q*Dg of (1.6) can be computed from 
Q*Dg and the recurrence coefficients y a using 0(n2) arithmetic operations. 
This algorithm relies on the Szego recursions (1. 12) and is closely related to the 
Levinson algorithm. We also show how the optimal polynomial can be evaluated 
from Q*Dg and the recurrence coefficients without the explicit computation of 
c. 

We have outlined an algorithm for the computation of the polynomial (1.4) 
that minimizes the error (1.5). It is easy to modify this algorithm in order to 
obtain a trigonometric polynomial (1.1) that minimizes the error (1.2). 

Proposition 1.1. Let 

(1.15) f:= [pofl) If (02)' ... ' f (Om)] Ti E R 

and let the matrices A, D, Q, and R be defined by (1.7)-(1.10) with n = 

21 + 1, and let A = diag[zk]km=l, where Zk = exp(iOk). Denote by c = 

CO 1, 2... 1 the least squares solution of 

(1.16) DAc=DA1f. 

Then the coefficients of the trigonometric polynomial (1.1) that minimizes the 
error (1.2) are given by 

Proof. The algebraic polynomial p(z) = Z2LO jz' minimizes the error (1.5) 
over all algebraic polynomials of degree at most 21, and the associated trigono- 
metric polynomial 

(1.18) t(a) = zp(z), z= exp(i<), 

minimizes the error (1.2) over all trigonometric polynomials with complex- 
valued coefficients of order at most l. It remains to be shown that if f E Rm 
then the trigonometric polynomial t(O) is real-valued, i.e., that its coefficients 
a1 and bj in (1.1) are real-valued. The latter is equivalent to Jnc = c, where 

Jn denotes the n x n reversal matrix, i.e., the columns of Jn are the columns 
of the identity matrix in reverse order. Since c is the unique solution of the 
normal equations 

(1.19) A*D2Ac= A*D2A f, 

we have 

(1.20) JA* D2AJ Jnc=JnA*D2Alf, 
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and from A' AJ = AlA it follows that 

(1.21) A D A(Jnc) = A D AXf. 

Complex conjugation of the linear system of equations (1.21) now shows that 
Jnc is also a solution of the normal equations (1.19), and therefore Jnc = c. 
Formulas (1. 17) now follow from (1. 18). 0 

A scheme closely related to the Stieltjes procedure for Szego polynomials for 
least squares approximation by trigonometric polynomials has been described 
by Newbery [14]. Without explicitly introducing Szego polynomials, Newbery 
derives recurrence relations for Re(0j(e 6)) and Im(0j(e 6)), and expresses the 
optimal trigonometric polynomial in terms of these basis functions. Another 
scheme closely related to the Stieltjes procedure has recently been presented by 
Demeure [4, ?7]. This scheme, in contrast with Algorithm 2.1 below, explicitly 
uses A *A to determine the recurrence coefficients. 

Finally we note that if we seek a trigonometric polynomial (1.1) that interpo- 
lates f (0) at the nodes 6k ' 1 < k < m, or a polynomial (1.4) that interpolates 
g(z) at the nodes zk, 1 < k < m, then several numerical schemes are avail- 
able. If the nodes Zk are equidistant on the unit circle, then the fast Fourier 
transform can be applied (see, e.g., Henrici [13, Chapter 13]). If the nodes are 
not equidistant, then interpolating trigonometric polynomials can be computed 
by the Bjbrck-Pereyra algorithm [3] or by the use of barycentric formulas (see 
Berrut [2] and Henrici [13, Chapter 13]). 

2. THE STIELTJES PROCEDURE FOR SZEG6 POLYNOMIALS 

In this section we consider the computation of c' := Q*Dg E Cn , where Q 
is defined by (1.10) and g is an arbitrary vector in Cm . The numerical method 
used is analogous to the Stieltjes procedure for the generation of polynomials 
orthogonal with respect to a measure on an interval, which has been studied by 
Gautschi [7, 8]. 

In the Stieltjes procedure for Szego polynomials, the Szego recursions (1.12) 
and (1.13) are used to successively generate the m-vectors xk and Yk' 0 < 

k < n, that contain the values of Ok and )k' respectively, at the nodes. The 
columns of Q. which are given by Dxk (O < k < n), can be stored if desired; 
however, if we only desire the vector c' = Q*Dg, the following algorithm can 
be performed, in which only the current xk and Yk vectors are stored. In the 
following, e = [ 1 , 1 , . . . , 1] Tdenotes the m-vector containing just ones, D is 
the matrix defined by (1.7), and A: diag[zl Z2 , ... ' Zm]. 

Algorithm 2.1. Stieltjes procedure for Szego polynomials. 
Input: m, n (n < m), {Wk}l {Zk}k=l , and g = [gkVm=l E Cm; 

Output: vector c' = [cIn]'_: Q*Dg, where Q is defined by (1.10), and 

parameters { j~ }2n1 and nl; 
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m \ 1/2 

Co := ae = Wk) 

k=1 
-1 * 2 x:=y:= '0 e; co:=x D9g; 

for j= 1, 2, ..., n- 1 do 
y1:-a IeTAD2x; 

AXj [(1 _ Ijyj)(1 + Iyjl)]1/2. 
a:= aj; 
t := j l(Ax + yy); 

y:=a -(7Ax+y); 
x:=t 
Cj:= x*D2g; 

Numerical examples in ?5 illustrate that for many distributions of nodes 
the Stieltjes procedure is very sensitive to roundoff errors. This parallels the 
behavior of the Stieltjes procedure for the generation of polynomials orthogonal 
on a point set in a real interval [15, 1 1, 7]. 

The classical Stieltjes procedure for generating three-term recurrence coef- 
ficients is a special case of the Lanczos process, in which a diagonal matrix 
is transformed to tridiagonal form by an orthogonal similarity transformation. 
Similarly, the Stieltjes procedure for Szego polynomials can be regarded as an 
application of the Arnoldi process to transform a unitary diagonal matrix by uni- 
tary similarity to a Hessenberg matrix. More precisely, the Stieltjes procedure 
implicitly generates the n x n leading principal submatrix of an m x m uni- 
tary Hessenberg matrix. The following lemma is a consequence of the "Implicit 
Q Theorem" [9, Chapter 7.4.5]. Throughout this paper, e1 = [1, 0, ..., 0]T 
denotes the first axis vector of appropriate dimension. 

Lemma 2.1. Given distinct nodes Zk on the unit circle and associated positive 
weights wk, k = 1,..., m, there is a unique m x m upper Hessenberg matrix 
H with positive subdiagonal elements and a unique unitary matrix U satisfying 

Uel = q0 = , [WI, W2, *,wm], 

(2.1) U*AU = H. 
A = diag[zl , Z2 ** zm], 

where m = (Zm 7 w . 

Observe that the matrix DA in (1.6) is the first n columns of the Krylov 
matrix [q0, Aq0, ... , Am - q0]. Consequently, the matrix Q in (1.10) is the 
first n columns of the unitary matrix U defined in (2.1). We therefore pro- 
pose another method for computing c' = Q*Dg. This method generates the 
Schur parameters y1, aj, and implicitly the Szegd polynomials Oj(z) and the 
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matrix Q, using the algorithm for the inverse eigenvalue problem for unitary 
Hessenberg matrices presented in [1]. 

3. AN INVERSE EIGENVALUE PROBLEM 

We outline an algorithm for the construction of the matrices H and U from 
A and q0 = Ue,. This algorithm will allow us to obtain Q*Dg and R lQ*Dg 
without storing Q, R, or Rl 

Any m x m unitary upper Hessenberg matrix H with positive subdiago- 
nal elements can be uniquely expressed as a product of m elementary unitary 
matrices, 

(3.1) H = G, (y,)G2( ... Gm- I(ym-lG(m 

for certain complex-valued parameters I yj I < 1, 1 < j < m, and I I = 1. 
Here, G (yj) denotes the m x m Givens reflector in the (j, j + 1) plane, 

Gj (yj) := j Y7 

where oj = (1- Iy j2)1/2, and Ik denotes the k x k identity matrix. Since 

IymI = 1, the matrix G'(ym) := diag[1, 1, ... , -ym] is also unitary. It 
can be verified that if the parameters yj in (3.1) are identical with the Schur 
parameters in (1.12)-(1.13), then the characteristic polynomial of the leading 
principal j x j submatrix of H is the monic Szego polynomial (To a...jj(z), 
where qj$(z) is defined by (1.12)-(1.13) (see [1] for details). We therefore call 
the representation (3.1) the Schur parametric form of H. 

We solve the inverse eigenvalue problem (2.1) by transforming A to a uni- 
tary upper Hessenberg matrix H in Schur parametric form by applying a judi- 
ciously chosen sequence of Givens reflectors. These reflectors are chosen so that 
intermediate matrices generated during the algorithm also can be represented 
in Schur parametric form, and the algorithm actually manipulates Schur pa- 
rameters and associated complementary parameters instead of matrix elements. 
We refer to this algorithm, which is described in [1], as the inverse unitary QR 
(I UQR) algorithm because of its relationship with the unitary QR algorithm 
presented in [10]. The IUQR algorithm requires only O(m 2) arithmetic op- 
erations to solve the inverse eigenvalue problem, i.e., to compute the set of 
parameters {yj, u1}JLmI that defines H in (2.1). A mathematically equivalent 
algorithm that manipulates matrix elements would require O(m 3) arithmetic 
operations. 

The required upper Hessenberg matrix H is obtained by performing a se- 
quence of elementary unitary similarity transformations whose composition re- 
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suits in the m x m unitary matrix U such that 

O*115 * iO* j %e* 1 
(3.2) ul1 

() U*] [u AJ [O U] _JL el H ] 

is an upper Hessenberg matrix with positive subdiagonal elements. (The number 
8 is arbitrary and remains unchanged during the execution of the algorithm.) 
Then H = H(y, *a, Y , 2m) has the desired eigenvalues and associated 
eigenvectors. 

The IUQR algorithm builds the Hessenberg matrix by incorporating node- 
weight pairs one at a time. For each j = 1, 2, ..., m, let 

(3.3) H.:=H(y), yjl 5j) 

denote the unitary upper Hessenberg matrix corresponding with the first j node- 
weight pairs {(zk 5 W2)}= 1 , and let (o) : = (Zj = W ) 1/2. (The eigenvalues 
of Hj are { Zk }jk= and the first components of its normalized eigenvectors 

are {(wk/oJo)}1jk=1.) If ] < m, the matrix Hj+1 is obtained by performing a 
sequence of elementary unitary similarity transformations to transform 

8 5 o0.o j+1 j+2 .. *. Wm 

(oI) W 
0 

(3.4) 0 

Wj+I Zj+I 
Wj+2 Zj+2 

0 

Wm Zm 

to the matrix 

Wj+2 ...Wm 
(1+1) 

0 

(3.5) Hj+1 0 

Wj+2 Zj+2 

0 
- Wm Zm 

The first step of the transformation from (3.4) to (3.5) is to carry out a 
similarity transformation to permute the coordinate planes (2, 3, ... , j, I + 1) 
to (j + 1, 2, 3, ... , j) . The leading principal submatrix of order j + 2 of the 
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matrix so obtained from (3.4) is of the form 

- 
]S Wj+ 1 % ll 

H1: Wj+I zj+l ? 
U)e 0 Hj 

zj+i H1] 
wj+1 Ij+l 

Uo) X X X X X 
= ~~~~X X X X X. 

X X X X 

X X X 

X XJ 

Next we set rnijl' :=((oj))2 + w2)1/2 and a0 := 16(j+'). Then 
(5617 (I) + 

(j+1) j+1 C 

0j+I) x x x x x x 
(2) ( X X X X X X) 

x x x x x 

is a Hessenberg matrix whose trailing principal (j + 1) x (j + 1) submatrix is 
unitary. On the completion of the similarity transformation of h 1), we obtain 

(1+,S 01)j+ 1) 

Uo+ 1) x x x x x x 

(3.6) Hk2) G*() = 0 x x x x x 

The circled element in (3.6) forms a "bulge" which is to be chased down along 
the subdiagonal in order to obtain a matrix of Hessenberg form. Define G3(a1) 
so that H(3) := G (a1)H(2)G(ao0) is a Hessenberg matrix. Then Hf(3) G3(a1) has 
a bulge in position (5, 3), which we annihilate by multiplying from the left with 
G4(a2). Proceeding in this manner, we obtain the upper Hessenberg matrix 
H(J+l) G* I(aj1), which is unitarily similar to H(1) The trailing principal 

(j+ 1) x (j+ 1) submatrix of H(J+l)G* + _) is unitarily similar to a unitary 
upper Hessenberg matrix with positive subdiagonal elements. The latter matrix 
is the desired Hessenberg matrix Hj+1 = H(y('+l)I Uj+1) . /j+1)) 

This procedure for adding a node-weight pair to Hj ,if implemented by 

directly manipulating the elements of the matrices H(k), for 1 < k < j, would 
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require o(2 ) arithmetic operations. However, note that for each k the trailing 
(j + 1) x (j + 1) principal submatrix of j(k) is unitary and of Hessenberg form; 
consequently, it is unitarily similar to a unitary Hessenberg matrix with positive 
subdiagonal elements, which we denote by Hj+< . Hence, we can implicitly carry 
out the similarity transformations by manipulating the Schur parameters of the 
intermediate matrices. In particular, one can show that 

R(k) (j+Il (Jl g.. Yk -2 Z l k-2 ' ) Ukl'** J) 
=+ "1 ' 2 ' '2k-2 ' Z1j+I ak-2, Yk- I *. ,2' 

for k = 2, 3, ... , j + 1 . We can therefore add a node-weight pair to Hj using 
only O(j) arithmetic operations. 

Thus, the inverse unitary QR algorithm can be used to construct the unitary 
m x m Hessenberg matrix H = H(yl, ..., ym_i, ym) from its eigenvalues 

and the first components of its normalized eigenvectors in O(m 2) arithmetic 
operations. If the matrix U in (2.1) is desired, it can be accumulated as the 
product of the elementary unitary transformation performed during the IUQR 
algorithm. Moreover, for any vector x E Cm, the vector U*x can be obtained 
by performing row operations on x during the algorithm. See [1] for more 
details on the IUQR algorithm. 

Recall that the matrix Q in (1.10) consists of the first n columns of the uni- 
tary matrix U. These columns correspond to the first n - 1 Schur parameters 
of H = Hm. Choosing x = Dg shows that we can compute the first n - 1 
Schur parameters and Q*Dg without solving the inverse eigenvalue problem in 
its entirety. In effect, we curtail the IUQR algorithm so that only the first n - 1 
Schur parameters of H. are computed for each j < m. This adaptation of the 
IUQR scheme to the solution of the discrete least squares problem is given in 
the following algorithm, which requires O(mn) arithmetic operations. 

Algorithm 3.1. Computation of Q*Dg, Schur parameters yj and associated 
complementary parameters aj . 

Input: m, n (n < m), distinct nodes {Zk}Ikm=l on Iz = 1, associated posi- 
tive weights {Wk}km=l , and vector g E Cm; 

Output: vector c' = [c ]7nI := Q*Dg and parameters {yjn}17I7, { n-}>4 . The 
vector c' below is assumed to be of length n + 1; its last component, cn, is 
used for temporary storage. 

:w1; 1 =--z1; 1 = ?; C0 = w1g1; c1 = 0; 
for = 1, 2, ..., m- 1 do 

j':=min(j, n-1); 
for k = j' + 1 , j,., 1 do c' := C-1 

0O j+ 1gj+l ; flo :0 =v; U0 := (172 j+ WI+1) /2 

fl0 fl=0/; ao = -w:+=luo; 
I~nl I-C l 

o 
n I n 
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if j + 1 <n then 

Yj+ 1 = - Y .j Z+ 1; 7j+l 0 ; 
for k = 1, 2, ..., j' do 

T = ak-l + YkZj+l ak-1; P := flk-l( + 1/ 

oak Tflk-l Zj+I /P; flk := fk-lorkl P; 

Yk flk-lyk - z+ ak-2 ; :=k P; 

[ ]Ck -ak flk i Ck ] 
-Ck+l 2 It flk ak - Ck+l 

4. COMPUTATION OF THE OPTIMAL POLYNOMIAL 

After computing the vector c' = Q*Dg and the parameters {2'j}>n- and 

{n}7i7_ using either Algorithm 3.1 or Algorithm 2.1, we can obtain the least 

squares solution c = R c of (1.6) in O(n ) arithmetic operations using the 
Szego recursions in the following manner. The vector r. E Cj containing the 

first j components of the jth column of R 1 contains the coefficients of the 
orthonormal Szego polynomial Oj-_ in the power basis. (This follows from the 
fact that the columns of R contain the coefficients of the power basis in terms 
of the basis of orthonormal Szego polynomials.) We can therefore recursively 
generate the vectors r E CJ by writing the Szego recursions in terms of these 
coefficients. This leads to the algorithm below. In the following, r: J 
denotes the conjugate reversal of the vector rj . 

Algorithm 4.1. Compute R lb for an arbitrary vector b E (n 
Input: parameters {2?}? {jj}7nI and vector b = n 

Output: vector a = [a j]n I := R I b> 
a:=O;r1:= 1/uo; al := rAb; 
for= 1, ..., n- 1 do 

r1j( [ 1 ( ] [+ [] ) 

a a + b r1[oil]; 

Hence, Algorithm 4.1 allows us to obtain the solution c of (1.6) from c' = 

Q*Dg the Schur parameters yj, and the associated complementary parameters 
a17. The vector c contains the coefficients of the optimal algebraic polynomial 
p in power form (1.4). By Proposition 1.1, the coefficients of the optimal 
trigonometric polynomial t in the form (1.1) can be recovered from c if g = 
AIf, where f E Rm. These representations of p and t are convenient if we 
desire to integrate or differentiate these polynomials, or if we wish to evaluate 
them at many equidistant points on a circle with center at the origin. The latter 
can be carried out efficiently by the fast Fourier transform method [ 1 3, Chapter 
13]. 
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If, on the other hand, we only desire to evaluate p or t at a few points, then 
we can use the representation of p in terms of orthonormal Szego polynomials. 
The vector c' = Q*Dg contains the coefficients of p(z) when expressed in this 
basis. The following algorithm uses the Szego recursions to evaluate p(z) using 
c'= Q*Dg. The quantities q and r in the algorithm contain the values of the 
polynomials qj and Xj at z. 

Algorithm 4.2. Evaluation of p at z. 
Input: vector c' = [cj]> j parameters {yjl?}j77 and {cj}lJo and z E C; 

Output: p = p(z) : 7= E cn_ q1 Cj (z) , where qj is the orthonormal Szego 
polynomial of degree j defined by (1.12)-(1.13); 

q := r:= 1/co; p := c0q; 
for j= 1, 2 ..., n -1 do 

[r] 
'=7 

[zY. 1 ] [r] 
p :=p+cjq; 

5. COMPUTED EXAMPLES 

We present some numerical examples that compare accuracy and speed of the 
Stieltjes procedure, the IUQR algorithm, and the QR decomposition method for 
general matrices as implemented in LINPACK [5] for the solution of the least 
squares problem (1.6). The examples were executed on a VAXstation 2000 
using single-precision and double-precision arithmetic (approximately 7 and 16 
significant decimal digits, respectively). 

For any vector C = [Cj]7i-l E Cnm, define the vector {cl = [Icj]%1. The sub- 
routines CQRDC and CQRSL of LINPACK are implementations of the QR 
decomposition method for the solution of a general overdetermined linear sys- 
tem of equations. When applied to the system (1.6), CQRDC produces a vector 
c/ such that, in exact arithmetic, Ic'I = Ic'j . The moduli are equal because the 
matrix with orthonormal columns that is implicitly generated by the subroutine 
CQRDC is equal to Q up to a unimodular scaling of its columns. The subrou- 
tine CQRSL then computes the (mathematically unique) least squares solution 
c. 

In the computed examples, we input m distinct arguments 6 i E [0, 27r) 
and corresponding positive weights as described below. We then solve the least 
squares problem (1.16), where the elements of the real vector f are randomly 
generated uniformly distributed numbers in [-5, 5]. The labels on the follow- 
ing graphs refer to the following three procedures, which were all performed in 
single-precision arithmetic. 

IUQR: Algorithm 3.1 is used to compute c'. Then c is calculated using Algo- 
rithm 4. 1. 

Stieltjes: Algorithm 2.1 is used to compute c'. Then c is calculated using 
Algorithm 4. 1. 
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LINPACK: The matrix DA is explicitly formed, and the subroutine CQRDC 
is used to compute c' . The subroutine CQRSL is then used to calculate c. 

For comparison of accuracy we also solve the system (1.16) in double-preci- 
sion arithmetic using the QR decomposition method for general matrices as im- 
plemented in the double precision LINPACK subroutines ZQRDC and ZQRSL. 
Let cd denote the coefficient vector determined by ZQRDC and cd denote the 
vector obtained by ZQRSL. 

error in Ic'I error in c 

le+00 Ie+0u AUQR 

le-02 le-02, ------- 

le-03 le-03 

le-04 le-04 le-03 e0 

le-06 le-06 - l 

le-07 le-07 
n 

0.00 20.00 40.00 0.00 20.00 40.00 

FIGURE 1 

m = 50, equispaced arguments in [0, 37r/2), weights equal to 
one 

error in Ic'I error in c 

le+00 C = - le+00 IUQR 
Stieltje. 

le-01 , le-01 Linpack 

le-02 * - le-02 

l e-03 *le-03 

le-04 a - le-04 

le-05 le-05 

le-06 le-06 

le-07 __ _ _ __ _ _ __ _ _ __ _ _ le-07 ': 

n 
0.00 20.00 40.00 0.00 20.00 40.00 

FIGURE 2 
m = 50, equispaced arguments in [0, 7r), weights equal to one 
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error in 1c'I 
equispaced arguments in [0,27r) randomly generated arguments in [0,2r) 

le+00 1le+00 IUQR 
Stieltjes 

le-0l le-0l Linpack 

le-02 - le-02 - 

le-03 le-03 - 

le-04 le-04 

le-05 - - le-05 

le-06 ............ e1-06 

l e-07 l-1e-07 

0.00 20.00 40.00 0.00 20.00 40.00 

FIGURE 3 
m = 50, weights equal to one 

cpu secs. 

I I ~~~~IUQR 
8.00 I..' Stiee 

I ffJ~e 

7.00 _ ,- Linpack 

6.00 _ 

5.00 

4.00 _ 

3.00 

2.00 7 

1.00 / 

0.00 _ _ _ _ _ _ _ _ _ _ _ 

n 
0.00 20.00 40.00 

FIGURE 4 

Average CPU time; m = 50 

Let 11c112 := (Zn77 cj12)112 denote the 2-norm of a vector c E Cn The 
first four figures display the relative error IC' I - Ic61112/1c6 112, denoted "error in 
jc'j ," and the relative error IjI - Cd 112/ IICd 112 , denoted "error in c ." Each graph 
displays the errors for m = 50 and increasing values of n . 

In our first two examples, the arguments of the nodes are equispaced in the 
interval [a, b) (i.e., 6 := a + (j - 1)(b - a)/m, j = 1, ..., m) and the 
weights are all equal to one. Figures 1-2 display errors in the coefficient vec- 
tors for equispaced nodes in intervals smaller than 27r. In these examples the 
errors in the coefficient vectors computed by the IUQR algorithm are some- 
times slightly larger than those determined by the Stieltjes procedure and the 
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LINPACK subroutines for small values of n. However, as n increases, and 
the problem becomes more ill-conditioned, the Stieltjes procedure is the first 
to produce inaccurate results. The LINPACK routines produce inaccurate re- 
sults for somewhat larger values of n than the Stieltjes procedure, while the 
error in the coefficient vector c' computed by the IUQR algorithm usually be- 
comes substantial only when n is very close to m. In this sense the IUQR 
algorithm displays the most robust behavior among these three algorithms. The 
error in the coefficient vector c is generally larger than in the vector c' because 
c = R IcI, and the matrix R can be quite ill-conditioned. We obtained results 
similar to those in Figures 1 and 2 with other choices for the nodes and weights. 
We found that the choice of weights w2 and of vector g in ( 1. 6) has little effect 
on the accuracy of these algorithms. 

Figure 3 displays the computed errors in c' when the arguments are equi- 
spaced in [0, 27r) and when the arguments are randomly generated uniformly 
distributed numbers in [0, 27r) . All weights in both of these examples are equal 
to one. In the first case we are computing the discrete Fourier transform, and 
the matrix DA has orthonormal columns. Both the Stieltjes procedure and 
the LINPACK subroutines produce somewhat smaller errors than the IUQR 
algorithm in this example, but the rate of growth of the errors is roughly the 
same for all three methods compared. Note that the fast Fourier transform 
method (FFT) [13] is a better method for solving this example. When the 
arguments are randomly generated uniformly distributed points in [0, 27r), the 
least squares problem is relatively well-conditioned, and the IUQR algorithm 
and the Stieltjes procedure yield roughly the same accuracy until n gets close 
to m. 

Figure 4 displays the average CPU time (in seconds) used by the three algo- 
rithms in the computation of c for 1 < n < m = 50. Thus, our experiments 
show that the IUQR algorithm is faster than the QR decomposition method for 
general matrices of LINPACK already for fairly small values of m and n. 

6. CONCLUSION 

A new method for least squares approximation by trigonometric polynomials 
is presented that is based on the solution of an inverse eigenvalue problem 
for a unitary Hessenberg matrix. This method (Algorithms 3.1 and 4.1) is 
never much less accurate but often much more accurate than competing schemes. 
Timings show the new method to be faster than schemes based on the QR 
decomposition of a general matrix already for fairly small problems. Unless 
m is much larger than n, or the nodes Oi are nearly uniformly distributed 
in the intervals [0, 27r), the new algorithm is more accurate than the Stieltjes 
procedure. 
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